Thermal mismatch dislocations produced by large particles in a strain-hardening matrix
نویسندگان
چکیده
Silver chloride containing particles of irregular form of the order of 1 ktm in diameter is used as a model material for particle-reinforced metal matrix composites (MMCs). Matrix dislocations due to the mismatch of the coefficients of thermal expansion of the two phases are made visible to transmission optical microscopy through bulk decoration performed at room temperature. The plastic zone around the particles takes two forms, similar to what is observed around the glass microspheres: (a) rows of coaxial prismatic dislocation loops punched into the matrix and (b) a plastic zone of irregular form containing partially resolved tangled dislocations. A relationship between the inclusion volume and the volume of the plastic zone around the inclusion--developed for the geometrically tractable problem of a sphere embedded in a strain-hardening matrix deforming by slip--is found to be valid for particles of irregular form as well, which are more representative of the reinforcement used in MMCs than spheres
منابع مشابه
Reinforced silver chloride as a model material for the study of dislocations in metal matrix composites
Silver chloride containing fibers, spheres and particles of irregular form is used as a model material to study plasticity in metal matrix composites. Matrix dislocations generated upon cooling by the mismatch of coefficient of thermal expansion between the matrix and the reinforcement are observed by transmission optical microscopy after decoration at room temperature by photodissociation of t...
متن کاملEnhancement of mechanical properties of low carbon steel based on heat treatment and thermo-mechanical processing routes
Thermal treatments and thermo-mechanical processing routes were applied on a conventional structural steel (st37 steel: 0.12C-1.11Mn-0.16Si) for improvement of tensile properties and enhancement of work-hardening behavior. Full annealing resulted in a sheet with coarse ferrite grains and pearlite colonies arranged alternatively in distinct bands, which showed high ductility, low strength, and t...
متن کاملA Micromechanical Model of Hardening, Rate sensitivity and Thermal Softening in BCC Single Crystals
The present paper is concerned with the development of a micromechanical model of the hardening, rate-sensitivity and thermal softening of b.c.c. crystals. In formulating the model we specifically consider the following unit processes: double-kink formation and thermally activated motion of kinks; the close-range interactions between primary and forest dislocations, leading to the formation of ...
متن کاملEffect of Mechanical Milling on the Morphologyand Structural Evaluation of Al-Al2O3 Nanocomposite Powders
The morphological and microstructural changes during mechanical milling of Al powder mixed with 2.5, 5 and 10 wt.% Al2O3 particles were studied. The milling was performed in a planetary ball mill for various times up to 20 h. The produced composite powders were investigated using X-ray diffraction pattern (XRD) to elucidate the role of particle size, secondary phase content and milling time on ...
متن کاملTHE INFLUENCE OF DRY SLIDING ON PRCIPITATION HARDENING BEHAVIORS OF Al-Cu-Si ALLOY
Abstract: Cold working performed before an aging treatment has a significant effect on size and amount of precipitate produced. This could be caused by the increase in defect density, such as vacancies and dislocations. In this research, the Al-Cu-Si alloy was solution-treated, wear-tested and then artificially aged for a period of 1–5 h. Changes in the amount of precipitate, in the lattice par...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002